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1 Problem statement

We consider the following boundary value problem

ẋ = A(t)x + B(t) f (x, t) + µ(t), t ∈ I = [t0, t1] (1.1)

with boundary conditions

(x(t0) = x0, x(t1) = x1) ∈ S ⊂ R2n, (1.2)

with phase constraints

x(t) ∈ G(t) : G(t) = {x ∈ Rn | γ(t) ≤ F(x, t) ≤ δ(t), t ∈ I}, (1.3)

and integral constraints

3gj(x) ≤ cj, j = 1, m1; (1.4)

gj(x) = cj, j = m1 + 1, m2; (1.5)

gj(x) =
t1∫

t0

f0j(x(t), t) dt, j = 1, m2; (1.6)
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Here A(t), B(t) are prescribed matrices with piecewise continuous elements of n × n,
n × m order, respectively, µ(t), t ∈ I is given n-dimensional vector-function with piecewise
continuous elements, m-dimensional vector-function f (x, t) is defined and continuous in the
variables (x, t) = Rn × I and satisfies the following conditions:

| f (x, t)− f (y, t)| ≤ l|x− y|, ∀(x, t), (y, t) ∈ Rn × I, l = const > 0,

| f (x, t)| ≤ c0|x|+ c1(t), c0 = const ≥ 0, c1(t) ∈ L1(I, R1),

S is a convex closed set. Function F(x, t) = (F1(x, t), . . . , Fr(x, t)), t ∈ I is an r-dimensional
vector-function which is continuous in arguments, γ(t) = (γ1(t), . . . , γr(t)) and δ(t) =

(δ1(t), . . . , δr(t)), t ∈ I are prescribed continuous functions.
The values cj, j = 1, m2 are prescribed constants, f0j(x, t), j = 1, m2 are given continuous

functions satisfying to the conditions

| f0j(x, t)− f0j(y, t)| ≤ lj|x− y|, ∀(x, t), (y, t) ∈ Rn × I, j = 1, m2;

| f0j(x, t)| ≤ c0j|x|+ c1j(t), c0j = const, c1j ∈ L1(I, R1), j = 1, m2.

Note, that: 1) if A(t) ≡ 0, m = n, B(t) = In, then the equation (1.1) can be written as

ẋ = f (x, t) + µ(t) = f (x, t), t ∈ I. (1.7)

Therefore, the results obtained below remain valid for the equation (1.7) at conditions (1.2)–
(1.6);

2) if f (x, t) = x + µ1(t) (or f (x, t) = C(t)x + µ1(t)), then the equation (1.1) can be written
in form

ẋ = A(t)x + B(t)x + B(t)µ1(t) + µ(t) = A(t)x + µ(t), t ∈ I, (1.8)

where A(t) = A(t) + B(t), µ(t) = B(t)µ1(t) + µ(t). It follows that the equation (1.8) is a
particular case of equation (1.1).

The following problems are stated.
Problem 1. To find necessary and sufficient conditions for the existence of solutions of

boundary value problem (1.1)–(1.6).
Problem 2. To construct a solution of boundary value problem (1.1)–(1.6).
As it follows from the problem statement, it is necessary to prove the existence of the pair

(x0, x1) ∈ S such that the solution of (1.1) proceeded from the point x0 at the time t0 passes
through the point x1 at the time t1, along with the solution of the system (1.1) for each time
the phase constraint is satisfied (1.3), and integrals (1.6) satisfy (1.4), (1.5). In particular, the
set S is defined by the relation

S =
{
(x0, x1) ∈ R2n | Hj(x0, x1) ≤ 0, j = 1, p; 〈aj, x0〉+ 〈bj, x1〉 − dj = 0, j = p + 1, s

}
,

where Hj(x0, x1), j=1, p are convex functions in the variables (x0, x1), x0=x(t0), x1=x(t1),
aj ∈ Rn, bj ∈ Rn, dj ∈ R1, j = p + 1, s are given vectors and numbers, 〈·, ·〉 is the scalar
product.

In many cases, in practice the process under study is described by the equation of the
form (1.1) in the phase space of the system defined by the phase constraint of the form (1.3).
Outside this domain the process is described by completely different equations or the process
under investigation does not exist. In particular, such phenomena take place in the research
of dynamics of nuclear and chemical reactors (outside the domain (1.3) reactors do not exist.)
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Integral constraints of the form (1.4) characterize the total load experienced by the elements
and nodes in the system (for example, total overload of cosmonauts), which should not exceed
the specified values and equations of the form (1.5) correspond to the total limits for the system
(for example, fuel consumption is equal to a predetermined value).

The essence of the method consists in the fact that at the first stage of research by trans-
formation and introducing a fictitious control the initial problem is immersed in the control
problem. Further, the existence of solutions of the original problem and the construction of
its solution is carried out by solving the problem of optimal control of a special kind. With
this approach, the necessary and sufficient conditions for the existence of the solution of the
boundary value problem (1.1)–(1.6) can be obtained from the condition to achieve the lower
bound of the functional on a given set, and the solution of the original boundary problem is
the limit points of minimizing sequences.

2 Transformation

We assume that f0(x, t) = ( f01(x, t), . . . , f0m2(x, t)), where

f0(x, t) = C(t)x + f0(x, t), t ∈ I, (2.1)

C(t), t ∈ I is known matrix of m2 × n order with piecewise continuous elements, f 0(x, t) =

( f 01(x, t), . . . , f 0m(x, t)). If the j-th row of the matrix C(t) is zero, then f0j(x, t) = f 0j(x, t).
Thus, without loss of generality, we can assume the function f0(x, t) is defined by (2.1). By
introducing additional variables d = (d1, . . . , dm1) ∈ Rm1 , d ≥ 0, the relations (1.4), (1.6) can be
represented as

gj(x) =
t1∫

t0

f0j(x(t), t) dt = cj − dj, j = 1, m1,

where
d ∈ Γ = {d ∈ Rm1 | d ≥ 0}.

Let the vector c = (c1, . . . , cm2), where cj = cj − dj, j = 1, m1, cj = cj, j = m1 + 1, m2. We
introduce vector-function η(t) = (η1(t), . . . , ηm2(t)), t ∈ I, where

η(t) =
t∫

t0

f0(x(τ), τ) dτ, t ∈ [t0, t1].

Then
η̇ = f0(x(t), t) = C(t)x + f 0(x, t), t ∈ I

η(t0) = 0, η(t1) = c, d ∈ Γ.

Now the initial boundary value problem (1.1)–(1.6) can be written as

ξ̇ = A1(t)ξ + B1(t) f (Pξ, t) + B2 f 0(Pξ, t) + B3µ(t), t ∈ I, (2.2)

ξ(t0) = ξ0 = (x0, Om2), ξ(t1) = ξ1 = (x1, c), (2.3)

(x0, x1) ∈ S, d ∈ Γ, Pξ(t) ∈ G(t), t ∈ I, (2.4)

where

ξ(t) =
(

x(t)
η(t)

)
, A1(t) =

(
A(t) On,m2

C(t) Om2,m2

)
, B1(t) =

(
B(t)

Om2,m

)
,
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B2 =

(
In

Om2,n

)
, B3 =

(
On,m2

Im2

)
, P =

(
In, On,m2

)
, Pξ = x,

Oj,k is matrix of j× k order with zero elements, Oq ∈ Rq is vector q× 1 with zero elements,
ξ = (ξ1, . . . , ξn, ξn+1, . . . , ξn+m2).

3 Integral equation

The basis of the proposed method of solving problems 1 and 2 are the following theorems
about the properties of solutions of the first order Fredholm integral equation:

Ku =

t1∫
t0

K(t0, t)u(t) dt = a, (3.1)

where K(t0, t) = ‖Kij(t0, t)‖, i = 1, n, j = 1, m is known matrix of n×m order with piecewise
continuous elements in t at fixed t0, u(·) ∈ L2[I, Rm] is the source function, I = [t0, t1], a ∈ Rn

is given n-dimensional vector.

Theorem 3.1. Integral equation (3.1) for any fixed a ∈ Rn has a solution if and only if the matrix

C(t0, t1) =

t1∫
t0

K(t0, t)K∗(t0, t) dt, (3.2)

n× n order is positive definite, where “*” is a sign of transposition.

Theorem 3.2. Let the matrix C(t0, t1) be positive definite. Then the general solution of the integral
equation (3.1) has the form

u(t) = K∗(t0, t)C−1(t0, t1)a + v(t)− K∗(t0, t)C−1(t0, t1)

t1∫
t0

K(t0, t)v(t) dt, t ∈ I, (3.3)

where v(·) ∈ L2(I, Rm) is an arbitrary function, a ∈ Rn is an arbitrary vector.

Proofs of Theorems 3.1 and 3.2 are given in [2, 3]. Application of Theorems 3.1 and 3.2 to
solve the controllability and optimal control problem is presented in [4–7].

4 Immersion principle

Along with the differential equation (2.2) with boundary conditions (2.3) we consider the
linear control system

ẏ = A1(t)y + B1(t)w1(t) + B2(t)w2(t) + µ2(t), t ∈ I, (4.1)

y(t0) = ξ0 = (x0, Om2), y(t1) = ξ1 = (x1, c), (4.2)

(x0, x1) ∈ S, d ∈ Γ, w1(·) ∈ L2(I, Rm), w2(·) ∈ L2(I, Rm2), (4.3)

where µ2(t) = B3µ(t), t ∈ I.
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Let the matrix B(t) = (B1(t), B2(t)) of (n + m2)× (m2 + m) order, and the vector-function

w(t)=
(

w1(t)
w2(t)

)
∈ L2(I, Rm+m2).

It is easy to see that the control w(·) ∈ L2(I, Rm+m2) which transfers the trajectory of system
(4.1) from any initial state ξ0 to any desired state ξ1 is a solution of the integral equation

t1∫
t0

Φ(t0, t)B(t)w(t) dt = a, (4.4)

where Φ(t, τ) = θ(t)θ−1(τ), θ(t) is the fundamental matrix of solutions of the linear homoge-
neous system ω̇ = A1(t)ω, vector

a = a(ξ0, ξ1) = Φ(t0, t1)[ξ1 −Φ(t1, t0)ξ0]−
t1∫

t0

Φ(t0, t)µ2(t) dt.

As follows from (3.1), (4.4), the matrix K(t0, t) = (t0, t)B(t). We introduce the following
notations

λ1(t, ξ0, ξ1) = T1(t)ξ0 + T2(t)ξ1 + µ3(t) = E(t)a, t ∈ I,

W(t0, t1) =

t1∫
t0

Φ(t0, t)B(t)B∗(t)Φ∗(t0, t)dt, W(t0, t) =
t∫

t0

Φ(t0, τ)B(τ)B∗(τ)Φ∗(t0, τ)dτ,

W(t, t1) = W(t0, t1)−W(t0, t), E(t) = B∗(t)Φ∗(t0, t)W−1(t0, t1),

µ3(t) = −E(t)
t1∫

t0

Φ(t0, t)µ2(t)dt, λ2(t, ξ0, ξ1) = E1(t)ξ0 + E2(t)ξ1 + µ4(t),

E1(t) = Φ(t, t0)W(t, t1)W−1(t0, t1), E2(t) = Φ(t, t0)W(t0, t)W−1(t0, t1)Φ(t0, t1),

µ4(t) = Φ(t, t0)

t∫
t0

Φ(t0, τ)µ2(τ)dτ − E2(t)
t1∫

t0

Φ(t1, t)µ2(t)dt,

N1(t) = −E(t)Φ(t0, t1), N2(t) = −E2(t), t ∈ I.

Theorem 4.1. Let the matrix W(t0, t1) > 0. The control w(·) ∈ L2(I, Rm+m2) transfers the trajectory
of system (4.1) from any initial point ξ0 ∈ Rn+m2 to any finite state ξ1 ∈ Rn+m2 if and only if

w(t) ∈W =
{

w(·) ∈ L2(I, Rm+m2) | w(t) = v(t) + λ1(t, ξ0, ξ1) + N1(t)z(t1, v),

t ∈ I, ∀v(·) ∈ L2(I, Rm+m2)
}

,
(4.5)

where function z(t) = z(t, v), t ∈ I is a solution of the differential equation

ż = A1(t)z + B(t)v(t), z(t0) = 0, t ∈ I, v(·) ∈ L2(I, Rm+m2). (4.6)

Solution of the differential equation (4.1) corresponding to the control w(t)∈W is defined by the formula

y(t) = z(t) + λ2(t, ξ0, ξ1) + N2(t)z(t1, v), t ∈ I. (4.7)
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Proof. As follows from Theorem 3.1, the matrix W(t0, t1) = C(t0, t1) > 0, where K(t0, t) =

Φ(t0, t)B(t). Now the relation (3.3) is written in the form (4.5). Solution of the system (4.1)
corresponding to the control (4.5) is defined by (4.7), where z(t) = z(t, v), t ∈ I is solution of
the differential equation (4.6). The theorem is proved.

Lemma 4.2. Let the matrix W(t0, t1) > 0. Then the boundary value problem (1.1)–(1.6) (or (2.2)–
(2.4)) is equivalent to the following problem

w(t) = (w1(t), w2(t)) ∈W, w1(t) = f (Py(t), t), w2(t) = f 0(Py(t), t), (4.8)

ż = A1(t)z + B1(t)v1(t) + B2(t)v2(t), z(t0) = 0, t ∈ I, (4.9)

v(t) = (v1(t), v2(t)), v1(·) ∈ L2(I, Rm), v2(·) ∈ L2(I, Rm2), (4.10)

(x0, x1) ∈ S, d ∈ Γ, Py(t) ∈ G(t), t ∈ I, (4.11)

where v(·) = (v1(·), v2(·)) ∈ L2(I, Rm+m2) is an arbitrary function, y(t), t ∈ I is determined by the
formula (4.7).

Proof. At relations (4.8)–(4.11) function

y(t) = ξ(t), t ∈ I, Py(t) = Pξ(t) ∈ G(t), t ∈ I, w(t) = (w1(t), w2(t)) ∈W.

The lemma is proved.

We consider the following optimization problem: minimize the functional

J(v1, v2, p, d, x0, x1)

=

t1∫
t0

[|w1(t)− f (Py(t), t)|2 + |w2(t)− f 0(Py(t), t)|2 + |p(t)− F(Py(t), t)|2] dt

=

t1∫
t0

F0(t, v1(t), v2(t), p(t), d, x0, x1, z(t), z(t1)) dt→ inf

(4.12)

at conditions

ż = A1(t)z + B1(t)v1(t) + B2(t)v2(t), z(t0) = 0, t ∈ I, (4.13)

v1(·) ∈ L2(I, Rm), v2(·) ∈ L2(I, Rm2), (x0, x1) ∈ S, d ∈ Γ, (4.14)

p(t) ∈ P(t) = {p(·) ∈ L2(I, Rr) | γ(t) ≤ p(t) ≤ δ(t), t ∈ I}, (4.15)

where
w1(t) = v1(t) + λ11(t, ξ0, ξ1) + N11(t)z(t1, v), t ∈ I,

w2(t) = v2(t) + λ12(t, ξ0, ξ1) + N12(t)z(t1, v), t ∈ I,

N1(t) =
(

N11(t)
N12(t)

)
, λ1(t, ξ0, ξ1) =

(
λ11(t, ξ0, ξ1)

λ12(t, ξ0, ξ1)

)
.

We denote

X = L2(I, Rm+m2)× P(t)× Γ× S ⊂ H

= L2(I, Rm)× L2(I, Rm2)× L2(I, Rr)× Rm1 × Rn × Rn,

J∗ = inf
θ∈X

J(θ), θ = (v1, v2, p, d, x0, x1) ∈ X, X∗ =
{

θ∗ ∈
X

J(θ∗)
= 0

}
.
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Theorem 4.3. Let the matrix W(t0, t1) > 0, X∗ 6= ∅. In order for the boundary value problem
(1.1)–(1.6) to have a solution, it is necessary and sufficient that the value J(θ∗) = 0 = J∗, where
θ∗ = (v∗1 , v∗2 , p∗, d∗, x∗0 , x∗1) ∈ X is optimal control for the problem (4.12)–(4.15).

If J∗ = J(θ∗) = 0, then the function

x∗(t) = z(t, v∗1 , v∗2) + λ2(t, d∗, x∗0 , x∗1) + N2(t)z(t1, v∗1 , v∗2), t ∈ I

is a solution of the boundary value problem (1.1)–(1.6). If J∗ > 0, then the boundary value problem
(1.1)–(1.6) has no solution.

Proof. Necessity. Let the boundary value problem (1.1)–(1.6) have a solution. Then it follows
from Lemma 4.2, that the values w∗1(t) = f (Py∗(t), t), w∗2(t) = f 0(Py∗(t), t), where w∗(t) =

(w∗1(t), w∗2(t)) ∈ W, y(t), t ∈ I is defined by formula (4.7), ξ∗0 = (x∗0 , Om2), ξ∗1 = (x∗1 , c∗),
c∗ = (cj

∗ − d∗j , j = 1, m1, cj, j = m1 + 1, m2). Inclusion y∗(t) ∈ G(t), t ∈ I is equivalent to
p∗(t) = F(y∗(t), t), where γ(t) ≤ p∗(t) = F(y∗(t), t) ≤ δ(t), t ∈ I. Consequently, the value
J(θ∗) = 0. Necessity is proved.

Sufficiency. Let J(θ∗) = 0. This is possible if and only if w∗1(t) = f (Py∗(t), t), w∗2(t) =

f 0(Py∗(t), t), p∗(t) = F(y∗(t), t), (x∗0 , x∗1) ∈ S, d∗ ∈ Γ, v∗1(·) ∈ L2(I, Rm), v∗2(·) ∈ L2(I, Rm2).
Sufficiency is proved. The theorem is proved.

The transition from the boundary value problem (1.1)–(1.6) to the problem (4.12)–(4.15) is
called the principle of immersion.

5 Optimization problem

We consider the solution of the optimization problem (4.12)–(4.15). Note, that the function

F0(t, v1, v2, p, d, x0, x1, z, z) = |w1 − f (Py, t)|2 + |w2 − f0(Py, t)|2 + |p− F(Py, t)|2

= F0(t, θ, z, z) = F0(t, q), q = (θ, z, z),

where

w1 = v1 + λ11(t, x0, x1, d) + N11(t)z, z = z(t1, v1, v2),

w2 = v2 + λ12(t, x0, x1, d) + N12(t)z, y = z + λ2(t, x0, x1, d)+N2(t)z,

P = (In, Onm2), Py = x.

Theorem 5.1. Let the matrix be W(t0, t1) > 0, the function F0(t, q) is defined and continuously
differentiable in q = (θ, z, z), and the following conditions hold:

|F0z(t, θ + ∆θ, z + ∆z, z + ∆z)− F0z(t, θ, z, z)| ≤ L(|∆z|+ |∆z|+ |∆θ|),

|F0z(t, θ + ∆θ, z + ∆z, z + ∆z)− F0z(t, θ, z, z)| ≤ L(|∆z|+ |∆z|+ |∆θ|),

|F0θ(t, θ + ∆θ, z + ∆z, z + ∆z)− F0θ(t, θ, z, z)| ≤ L(|∆z|+ |∆z|+ |∆θ|),

∀θ ∈ Rm+m2+r+m1+n+n, ∀z ∈ Rn+m2 , ∀z ∈ Rn+m2 .

Then the functional (4.12) at conditions (4.13)–(4.15) is continuous and differentiable by Fréchet
in any point θ ∈ X, and

J′(θ) = (J′1(θ), J′2(θ), J′3(θ), J′4(θ), J′5(θ), J′6(θ)) ∈ H,
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where

J′1(θ) =
∂F0(t, q)

∂v1
− B∗1(t)ψ(t), J′2(θ) =

∂F0(t, q)
∂v1

− B∗2(t)ψ(t),

J′3(θ) =
∂F0(t, q)

∂p
, J′4(θ) =

t1∫
t0

∂F0(t, q)
∂d

dt,

J′5(θ) =
t1∫

t0

∂F0(t, q)
∂x0

dt, J′6(θ) =
t1∫

t0

∂F0(t, q)
∂x1

dt,

(5.1)

q = (θ, z(t), z(t, v)), function z(t), t ∈ I is solution of differential equation (4.13) at v1 = v1(·) ∈
L2(I, Rm), v2 = v2(·) ∈ L2(I, Rm2), and function ψ(t), t ∈ I is solution of the adjoint system

ψ̇ =
∂F0(t, q(t))

∂z
− A∗1(t)ψ, ψ(t1) = −

t1∫
t0

∂F0(t, q(t))
∂z(t1)

dt. (5.2)

In addition, the gradient J′(θ), θ ∈ X satisfies to Lipschitz condition

‖J′(θ1)− J′θ2)‖ ≤ K‖θ1 − θ2‖, ∀θ1, θ2 ∈ X, (5.3)

where K > 0 is Lipschitz constant.

Proof. Let θ, θ + ∆θ ∈ X, where ∆θ = (∆v1, ∆v2, ∆p, ∆d, ∆x0, ∆x1). It can be shown that
∆ż = A1(t)∆z + B1(t)∆v1 + B2(t)∆v2, increment of the functional

∆J = J(θ + ∆θ)− J(θ)

= 〈J′1(θ), ∆v1〉L2
+ 〈J′2(θ), ∆v2〉L2

++〈J′3(θ), ∆p〉L2
+ 〈J′4(θ), ∆d〉Rm1

+ 〈J′5(θ), ∆x0〉Rn + 〈J′6(θ), ∆x1〉Rn + R1 + R2 + R3 + R4 + R5 + R6,

where |R1 + R2 + R3 + R4 + R5 + R6| ≤ c∗‖∆θ‖2
X, c∗ = const > 0, |∑

6
i=1 Ri|
‖∆θ‖X

→ 0 at ‖∆θ‖X → 0.
From this, the statement of the theorem follows. The theorem is proved.

Using the relations (5.1)–(5.3) we construct a sequence {θn} = {vm(t), v2n(t), pn(t)} by the
following algorithm:

v1n+1 = v1n − αn J′1(θn), v2n+1 = v2n − αn J′2(θn),

pn+1 = Pp[pn − αn J′3(θn)], dn+1 = PΓ[dn − αn J′4(θn)],

x0n+1 = PS[x0n − αn J′5(θn)]

x1n+1 = PS[x1n − αn J′6(θn)], n = 0, 1, 2, . . . ,

(5.4)

where 0 < αn = 2
K+2ε , ε > 0, K > 0 is Lipschitz constant of (5.3). We introduce the following

sets
Λ0 = {θ ∈ X | J(θ) ≤ J(θ0)}, X∗∗ =

{
θ∗∗ ∈ X | J(θ∗∗) = inf

θ∈X
J(θ)

}
.

Theorem 5.2. Let the conditions of Theorem 5.1 be satisfied, the functional J(θ), θ ∈ X be bounded
from below, the sequence {θn} ⊂ X be defined by (5.4). Then:

1) J(θn)− J(θn+1) ≥ ε‖θn − θn+1‖2, n = 0, 1, 2, . . . ; (5.5)

2) lim
n→∞
‖θn − θn+1‖ = 0, n = 0, 1, 2, . . . . (5.6)
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Proof. Since θn+1 is the projection of the point θn − αn J′(θn), then

〈θn+1−θn+αn J′(θn), θn−θn+1〉H ≥ 0, ∀ θ ∈ X.

Then with taking into account J(θ) ∈ C1,1(X) we get

J(θn)− J(θn+1) ≥
(

1
αn
− K

2

)
‖θn − θn+1‖2 ≥ ε‖θn − θn+1‖2.

Consequently, the numerical sequence {J(θn)} is strictly decreasing, and the inequality
(5.5) is valid. Equality (5.6) follows from the boundedness below of functional J(θ), θ ∈ X.
The theorem is proved.

Theorem 5.3. Let the conditions of Theorem 5.1 hold, the set Λ0 be bounded, J(θ), θ ∈ X be convex
functional. Then the following statements hold.

1) The set Λ0 is weakly bicompact, X∗∗ 6= 0.
2) The sequence {θn} is minimizing, i.e.

lim
n→∞

J(θn) = J∗ = inf
θ∈X

J(θ).

3) The sequence {θn} ⊂ Λ0 weakly converges to the point θ∗∗ ∈ X∗∗.
4) The following convergence rate is satisfied

0 ≤ J(θn)− J∗ ≤
c1

n
, c1 = const > 0, n = 1, 2, . . .

5) The boundary value problem (1.1)–(1.6) has a solution if and only if

lim
n→∞

J(θn) = J∗ = inf
θ∈X

J(θ) = J(θ∗∗) = 0.

Proof. The first assertion follows from the fact that Λ0 is bounded closed convex set of a
reflexive Banach space X, as well as from the weak lower semi-continuity of functional J(θ)
on weakly bicompact set Λ0. The second assertion follows from estimation J(θn)− J(θn+1) ≥
ε‖θn − θn+1‖2, n = 0, 1, 2, . . . It follows that J(θn+1) < J(θn), ‖θn− θn+1‖ → 0 at n→ ∞, {θn} ⊂
Λ0. Hence from the convexity of functional J(θn) at Λ0 follows, that {θn} is minimizing.
The third assertion follows from weak bicompactness of set Λ0. Estimation of convergence
rate follows from inequality J(θn)− J(θ∗∗) ≤ c1‖θn − θn+1‖. The last statement follows from
Theorem 4.3. The theorem is proved.

We note, that if f (x, t), f0j(x, t), j = 1, m2, F(x, t) are linear functions with respect to x,
then the functional J(θ) is convex.

Example

The equation of motion of the system is

ϕ̈ + ϕ = cos t, 0 < t < π, ϕ(0) = 0, ϕ(π) = 0, (5.7)

where the phase constraint is given as

0.37t
π
− 0, 37 ≤ ϕ(t) ≤ 0.44t

π
, t ∈ I = [0, π]. (5.8)
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Integral constraint is defined by
π∫

0

ϕ(t) dt ≤ 1. (5.9)

Denoting ϕ = x1, ϕ̇ = ẋ1 = x2, the equation (5.7) can be written in vector form

ẋ = Ax + Bx + µ(t), x(0) = x0 =

(
0
δ

)
∈ S0, x(π) = x1 =

(
0
β

)
∈ S1, (5.10)

where

x =

(
x1

x2

)
, A =

(
0 1
0 0

)
, B =

(
0 0
−1 0

)
, µ(t) =

(
0

cos t

)
,

x0 ∈ S0 = {(x1(0), x2(0)) ∈ R2 | x1(0) = 0, x2(0) = δ ∈ R1},
x1 ∈ S1 = {(x1(π), x2(π)) ∈ R2 | x1(π) = 0, x2(π) = β ∈ R1},

phase constraint (5.8) has the form

0.37t
π
− 0.37 ≤ x1(t) ≤

0.44t
π

, t ∈ I, (5.11)

integral constraint (5.9) can be written as
π∫

0

x1(t) dt ≤ 1. (5.12)

For this task F(x, t) = x1, γ(t) = 0.37t
π − 0.37, δ(t) = 0.44t

π , g1(x1) =
∫ π

0 f01(x1) dt =
∫ π

0 x1(t) dt,
c1 = 1, m1 = 1, m2 = 0, f01 = x1.

Transformation

The function η(t) = η1(t), t ∈ I where η(t) =
∫ t

0 x1(τ) dτ, η̇(t) = x1(t), η(0) = 0, η(π) =

1− d1, d1 ≥ 0.
The set Γ = {d1 ∈ R1 | d1 ≥ 0}. Let ξ(t) = (ξ1(t), ξ2(t), ξ3(t)), where ξ1(t) = x1(t),

ξ2(t) = x2(t), ξ3(t) = η(t). Then

ξ̇(t) = A1ξ + B1ξ + µ1(t), t ∈ I = [0, π], (5.13)

ξ(0) = ξ0 =

x1(0)
x2(0)
η(0)

 =

0
δ

0

 , ξ(π) = ξ1 =

x1(π)

x2(π)

η(π)

 =

 0
β

1− d1

 , (5.14)

where

A1 =

0 1 0
0 0 0
1 0 0

 , B1 =

 0 0 0
−1 0 0
0 0 0

 , µ1(t) =

 0
cos t

0

 ,

P =

(
1 0 0
0 1 0

)
, Pξ =

(
ξ1

ξ2

)
, B2 = 0, f 0 = 0.

The phase constraint can be written as

0.37t
π
− 0.37 ≤ ξ1(t) ≤

0.44t
π

, t ∈ I = [0, π]. (5.15)

Here δ ∈ R1, β ∈ R1, d1 ∈ Γ = {d1 ∈ R1 | d1} ≥ 0.
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Immersion principle

Linear controlled system (see (4.1)–(4.3)) has the form

ẏ = A1y + B1w(t) + 1(t), t ∈ I = [0, π], (5.16)

y(0) = ξ0, y(π) = ξ1, (δ, β) ∈ R2, w(·) ∈ L2(I, R1),

where the matrix B1 and linear homogeneous system ω̇ = A1ω are

B1 =

 0
−1
0

 , ω =

ω1

ω2

ω3

 , ω̇1 = ω2, ω̇2 = 0, ω̇3 = ω1.

The fundamental matrix of solution of the linear homogeneous system ω̇ = A1ω is deter-
mined by the formula

θ(t) = eA1t =

1 t 0
0 1 0
t t2/2 1

 , θ−1(t) = e−A1t =

 1 −t 0
0 1 0
−t t2/2 1

 , φ(t, τ) = θ(t)θ−1(τ).

Vector

a = Φ(0, π)ξ1 − ξ0 −
π∫

0

Φ(0, t)µ1(t) dt =

 −πβ− 2
β− δ

π2β
2 + 1− d1 + π

 .

Matrix

W(0, π) =

π∫
0

Φ(0, t)BB∗Φ∗(0, t) dt =

 π3/3 −π2/2 −π4/8
−π2/2 π π3/6
−π4/8 π3/6 π5/20



W−1(0, π) =

192/π3 36/π2 360/π4

36/π2 9/π 60/π3

360/π4 60/π3 720/π5

 , W(0, t) =

 t3/3 −t2/2 −t4/8
−t2/2 t t3/6
−t4/8 t3/6 t5/20

 ,

W(t, π) =

(π3 − t3)/3 (t2 − π2)/2 (t4 − π4)/8
(t2 − π2)/2 π − t (π3 − t3)/6
(t4 − π4)/8 (π3 − t3)/6 (π5 − t5)/20

 .

Then

λ1(t, ξ0, ξ1) = E(t)a = B∗1(t)Φ
∗(0, t)W−1(0, π)a

=
(−πβ− 2)(−180t2 + 192πt− 36π2)

π4 +
(β− δ)[−30t2 + 36πt− 9π2]

π3

+
(π2β

2
+ 1− d1 − π

)
· −360t2 + 360πt− 60π2

π5 ;

E1(t)ξ0 = Φ(t, 0)W(t, π)W−1(0, π)ξ0

= δ


[12t(8πt−3π2−5t2)+πt(π3+18πt2−9π2t−10t3)]

π3

[π3+18πt2−9π2t−10t3]
π3

[24t2(8πt−3π2−5t2)+πt2(π3+18πt2−9π2t−10t3)+3πt3(3πt−π2−2t2)]
2π4

 ,
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E2(t)ξ1 =

 β · (−8πt3+3π2t2+5t4)

2π3 + (1− d1) · (−60πt3+30π2t2+30t4)
π5

β · (−12πt2+3π2t+10t3)
π3 + (1− d1) · (−180πt2+60π2t+120t3)

π5

β · (−2πt4+π2t3+t5)
2π3 + (1− d1) · (−15πt4+10π2t2+6t5)

π5

 ,

µ4(t) = Φ(t, 0)
t∫

0

Φ(0, τ)µ2(τ)dτ − E2(t)
π∫

0

Φ(π, t)µ2(t)dt =

−cos t + 1+ 4πt3−6π2t2

π4

sin t+ 12πt2−12π2t
π4

t− sin t + πt4−2π2t2

π4

 .

Here

E(t) = B∗1(t)φ
∗(0, t)W−1(0, π)

=

(
−180t2 + 192πt− 36π2

π4 ,
−30t2 + 36πt− 9π2

π3 ,
−360t2 + 360πt− 60π2

π5

)
,

E2(t) =


28πt3−12π2t2−15t4

π4
−8πt3+3π2t2+5t4

2π3
−60πt3+30π2t2+30t4

π5

84πt2−24π2t−60t3

π4
−12πt2+3π2t+10t3

π3
−180πt2+60π2t+120t3

π5

7πt4−4π2t3−3t5

π4
−2πt4+π2t3+t5

2π3
−15πt4+10π2t2+6t5

π5

 ,

N1(t) = −E(t)φ(0, π)

=

(
−180t2 + 168πt− 24π2

π4 ,
30t2 − 24πt + 3π2

π3 ,
360t2 − 360πt + 60π2

π5

)
,

N2(t) = −E2(t).

As follows from Theorem 4.1, the control

w(t) = v(t) + λ1(t, ξ0, ξ1) + N1(t)z(t1, v)

= v(t) +
(−πβ− 2)(−180t2 + 192πt− 36π2)

π4 +
(β− δ)(−30t2 + 36πt− 9π2)

π3

+
(π2β

2
+ 1− d1 + π

) (−360t2 + 360πt− 60π2)

π5

+
(−180t2 + 168πt− 24π2)

π4 z1(π, v) +
(30t2 − 24πt + 3π2)

π3 z2(π, v)

+
(360t2 − 360πt + 60π2)

π5 z3(π, v), t ∈ I = [0, π],

(5.17)

where z(t, v), t ∈ I = [0, π] is solution of the differential equation

ż = A1z + B1v(t), z(0) = 0, v(·) ∈ L2(I, R1). (5.18)

Solution of the differential equation (5.16) corresponding to equation (5.17) equals

y(t) =

y1(t)
y2(t)
y3(t)

 = z(t, v) + λ2(t, ξ0, ξ1) + N2(t)z(π, v)

= z(t, v) + E1(t)ξ0 + E2(t)ξ1 + µ4(t), t ∈ I = [0, π],
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where

y1(t) = z1(t, v) + δ
[12t(8πt− 3π2 − 5t2) + πt(π3 + 18πt2 − 9π2t− 10t3)]

π3

+ β
(−8πt3 + 3π2t2 + 5t4)

2π3 + (1− d1)
(−60πt3 + 30π2t2 + 30t4)

π5

+
4πt3 − 6π2t2

π4 − cos t + 1−
(
28πt3 − 12π2t2 − 15t4)

π4 z1 (π, v)

+

(
8πt3 − 3π2t2 − 5t4)

2π3 z2 (π, v) +
60πt3 − 30π2t2 − 30t4

π5 z3(π, v),

(5.19)

y2(t) = z2(t, v) + δ
π3 + 18πt2 − 9π2t− 10t3

π3 + β
(−12πt2 + 3π2t + 10t3)

π3

+ (1− d1)
(−180πt2 + 60π2t + 120t3)

π5 + sin t +
12πt2 − 12π2t

π4

− 84πt2 − 24π2t− 60t3

π4 z1(π, v)− (−12πt2 + 3π2t + 10t3)

π3 z2(π, v)

− (−180πt2 + 60π2t + 120t3)

π5 z3(π, v),

(5.20)

y3(t) = z3(t, v)

+ δ
[24t2(8πt− 3π2 − 5t2) + πt2(π3 + 18πt2 − 9π2t− 10t3) + 3πt3(3πt− 2t2 − π2)]

2π4

+ β
(−2πt4 + π2t3 + t5)

2π3 + (1− d1) ·
(−15πt4 + 10π2t2 + 6t5)

π5 + t− sin t

+
πt4 − 2π2t2

π4 − 7πt4 − 4π2t3 − 3t5

π4 z1(π, v)− (−2πt4 + π2t3 + t5)

2π3 z2(π, v)

− (−15πt4 + 10π2t2 + 6t5)

π5 z3(π, v), t ∈ I. (5.21)

Note that y1(0) = 0, y2(0) = δ, y3(0) = 0, y1(π) = 0, y2(π) = β, y3(π) = 1− d1.

Optimization problem

As for this example f = y1, F = y1, then optimization problem (4.12)–(4.15) can be written as:
minimize the functional

J(v, p, d1, δ, β) =

π∫
0

[
|w(t)− y1(t)|2 + |p(t)− y1(t)|2

]
dt

=

π∫
0

F0(t, v(t), p(t), d1, δ, β, z(t), z(π)) dt→ inf

(5.22)

at conditions (5.18), where

v(·) ∈ L2(I, R1), p(t) ∈ P(t), d1 ∈ Γ, δ ∈ R1, β ∈ R1, (5.23)
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function w(t), t ∈ I is determined by the formula (5.17), and the function y1(t), t ∈ I is defined
by relation (5.19), set

P(t) =
{

p(·) ∈ L2(I, R1) | 0.37t
π − 0.37 ≤ p(t) ≤ 0.44t

π , t ∈ I
}

. (5.24)

The partial derivatives of F0 read as follows:

∂F0(t, q)
∂v

= 2[w(t)− y1(t)],
∂F0(t, q)

∂p
= 2[p(t)− y1(t)],

∂F0(t, q)
∂d1

= 2[w(t)− y1(t)]

(
360t2 − 360πt + 60π2

π5 − 60πt3 − 30π2t2 − 30t4

π5

)

+ 2[p(t)− y1(t)]

(
−60πt3 + 30π2t2

+ 30t4

π5

)
;

∂F0(t, q)
∂δ

= 2[w(t)− y1(t)]
(
−30t2 + 36πt− 9π2

π3

− [12t(8πt− 3π2 − 5t2) + πt(π3 + 18πt− 9π2t− 10t3)]

π3

)
+ 2[p(t)− y1(t)]

[
− [12t(8πt− 3π2 − 5t2) + πt(π3 + 18πt2 − 9π2t− 10t3)]

π3

]
,

∂F0(t, q)
∂β

= 2[w(t)− y1(t)]
[
(−30t2 + 36πt− 9π2)

π3 − (−180t2 + 180πt− 30π2)

π3

− (−180t2 + 192πt− 36π2)

π3 − −8πt3 + 3π2t2 + 5t4

2π3

]
+ 2[p(t)− y1(t)]

(
8πt3 − 3π2t2 − 5t4

2π3

)
;

∂F0(t, q)
∂z1

= − 2[w(t)− y1(t)]− 2[p(t)− y1(t)],
∂F0(t, q)

∂z2
= 0,

∂F0(t, q)
∂z3

= 0;

∂F0(t, q)
∂z1(π)

= 2[w(t)− y1(t)] ·
[
−180t2 + 168πt− 24π2

π4 +
28πt3 − 12π2t2 − 15t4

π4

]
+ 2[p(t)− y1(t)] ·

(
28πt3 − 12π2t2 − 15t4

π4

)
;

∂F0(t, q)
∂z2(π)

= 2[w(t)− y1(t)]

[
30t2 − 24πt + 3π2

π3 − 8πt3 − 3π2t2 − 5t4

2π3

]

+ 2[p(t)− y1(t)]
[
−8πt3 − 3π2t2 − 5t4

2π3

]
;

∂F0(t, q)
∂z3(π)

= 2[w(t)− y1(t)]

(
360t2 − 360πt + 60π2

π5 − 60πt3 − 30π2t2 − 30t4

π5

)

+ 2[p(t)− y1(t)]
(
−60πt3 − 30π2t2 − 30t4

π5

)
.

It is easy to verify that the functional (5.22) at conditions (5.18), (5.23), (5.24) is convex.
Therefore, the sequences below are minimized.
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Minimizing sequences

To this problem control θ = (v, p, d1, δ, β) ∈ X. We choose the initial control

θ0 = (v0(t), p0(t), d10, δ0, β0) ∈ X,

where v0(·) ∈ L2(I, R1), p0(t) ∈ P(t), d10 ∈ Γ, δ0 ∈ R1, β0 ∈ R1. In particular v0(t) ≡ 1,
p0(t) = 0.405t

π − 0.185 ∈ P(t), d10 = 0.5, δ0 = −π
8 , β0 = −π

8 . We find the solution of the
differential equation ż = A1z + B1v(t), z(0)=0, at v=v0(t), i.e. ż10 = ż20, ż20 = −v0(t), ż30 =

z10, t ∈ [0, π], where z10(0) = 0, z20(0) = 0, z30(0) = 0. Thus, z10(t), z20(t), z30(t), t ∈ [0, π] are
known. Then q0 = (v0, p0, d0

1, δ0, β0, z0(t), z0(π)), z0(t) = (z10(t), z20(t), z30(t)). We compute
the partial derivatives

∂F0(t, q0)

∂v
,

∂F0(t, q0)

∂p
,

∂F0(t, q0)

∂d1
,

∂F0(t, q0)

∂δ
,

∂F0(t, q0)

∂β
,

∂F0(t, q0)

∂z10
,

∂F0(t, q0)

∂z20
= 0,

∂F0(t, q0)

∂z30
= 0,

∂F0(t, q0)

∂z10(π)
,

∂F0(t, q0)

∂z20(π)
,

∂F0(t, q0)

∂z30(π)
.

Following approximations

v1 = v0 − α0 J′1(θ0), p1 = Pp[p0 − α0 J′2(θ0)], d1 = PΓ[d0
10 − α0 J′3(θ0)];

δ1 = δ0 − α0 J′4(α0), β1 = β0 − α0 J′5(θ0),

where

J′1(θ0) =
∂F0(t, q0)

∂v
− B∗1 ψ0(t) =

∂F0(t, q0)

∂v
+ ψ20(t), ψ0 = (ψ10, ψ20, ψ30),

J′2(θ0) =
∂F0(t, q0)

∂p
, J′3(θ0) =

π∫
0

∂F0(t, q0)

∂d1
dt,

J′4(θ0) =

π∫
0

∂F0(t, q0)

∂δ
dt, J′5(θ0) =

π∫
0

∂F0(t, q0)

∂β
dt.

Here ψ0(t) = (ψ10(t), ψ20(t), ψ30(t)), t ∈ I is solution of the adjoint system

ψ̇10 =
∂F0(t, q0)

∂z10
− ψ20, ψ̇20 =

∂F0(t, q0)

∂z20
= 0,

ψ̇30 =
∂F0(t, q0)

∂z30
− ψ10 = −ψ10,

ψ10(π) = −
π∫

0

∂F0(t, q0)

∂z10(π)
dt, ψ20(π) = −

π∫
0

∂F0(t, q0)

∂z20(π)
dt,

ψ30(π) = −
π∫

0

∂F0(t, q0)

∂z30(π)
dt.

The quantity α0 = 1
K = const = 0, 1. As a result, we find that θ1 = (v1, p1, d11, δ1, β1).

Further the process of constructing is repeated {θn} with the initial point θ1, with the value
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αn = 0, 1, n = 0, 1, 2, . . . It can be shown, that vn → v∗, pn → p∗, d1n → d1∗, δn → δ∗, βn → β∗
at n→ ∞, the value J = (v∗, p∗, d1∗, δ∗, β∗) = 0, where

v∗(t) =
t
2

sin t− π

4
sin t, t ∈ [0, π];

p∗(t) =
t
2

sin t− π

4
sin t, t ∈ [0, π], d1∗ = 1, δ∗ = −

π

4
, β∗ = −

π

4
.

Functions

z1(v∗) = cos t− 1 +
1
2

tsin t− π

4
sin t +

π

4
t, t ∈ I,

z2(v∗) = −
1
2
(sin t− tcos t)− π

4
cos t +

π

4
, t ∈ I,

z3(v∗) = sin t− t +
1
2
(sin t− tcos t)− π

4
(−cos t + 1) +

π2

8
t2, t ∈ I,

where z1(π, v∗) = π2

4 − 2, z2(π, v∗) = 0, z3(π, v∗) = π3

8 − π.
Then (see (5.20)–(5.22))

y1∗(t) =
1
2

t sin t− π

4
sin t = x1∗(t), t ∈ I;

y2∗(t) = x2∗(t) = −
π

4
+

1
2

sin t +
1
2

tcos t− π

4
cos t +

π

4
, t ∈ I;

y3∗(t) =
1
2

sin t− 1
2

tcos t +
π

4
cos t− π

4
, t ∈ I.

Solution of the initial boundary value problem (5.8)–(5.10):

ϕ(t) = x1∗(t) = y1∗(t), t ∈ I,
0.37t

π
− 0.37 ≤ x1∗(t) ≤

0.44t
π

, t ∈ I;

π∫
0

ϕ(t) dt =
π∫

0

x1∗(t) dt = 0 ≤ 1, x0 =
(

0,−π

4

)
, x1 =

(
0,−π

4

)
,

ϕ(0) = 0, ϕ̇(0) = −π

4
, ϕ(π) = 0, ϕ̇(π) = −π

4
.

6 Conclusion

In general, the optimization problem (4.12)–(4.15) can have an infinite number of solutions
{θ∗}, for which J({θ∗}) = 0. Depending on the choice of the initial approximation the mini-
mizing sequences converge to an element of the set {θ∗}. Let θ∗ = (v∗1 , v∗2 , ρ∗, d∗, x∗0 , x∗1), where
J(θ∗) = 0 is a solution. Here x∗0 = x(t0), x∗1 = x(t1), (x∗0 , x∗1) ∈ S, x∗0 is the initial state of the sys-
tem. The requirements imposed on the right-hand side of the differential equation (1.1) under
which the initial Cauchy problem has a unique solution are represented in the formulation of
the problem. Consequently, the differential equation (1.1) with the initial state x(t0 = x∗0) has
a unique smooth solution for the values t ∈ [t0, t1]. Moreover, x(t1) = x∗1 and all constraints
(1.2)–(1.6) are satisfied. No matter what solution is allocated by iterative procedure, in the
case of J(θ∗) = 0 we find the appropriate solution to the problem (1.1)–(1.6).

For this example x(0) = x∗0 = (0,−π
4 ), x(t1) = x∗1 = (0,−π

4 ). The differential equation
(5.10), where ẋ = (A + B̄)x + µ(t), x(0) = x∗0 = (0,−π

4 ) has a unique solution

x1∗(t) = [2t sin t− π sin t]/4, x2∗(t) = [2 sin t + 2t cos t− π cos t]/4, t ∈ [0, π],
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where J(θ∗) = 0. Functions x1∗(t), x2∗(t), t ∈ [0, π] satisfy the constraints (5.10)–(5.12), where
(x1∗(π), x2∗(π)) = x∗1 .

The proof of the solvability and construction of solution of the boundary value problem
based on solving of the optimization problem (4.12)–(4.15), where

lim
n→∞

J(θn) = inf
θ∈X

J(θ) = 0

gives the solvability condition, and the solution of the boundary value problem is determined
though the limit points of the sequence {θn} equal to {θ∗}.

References

[1] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, Differentsialnye uravneniya (in Rus-
sian) [Differential equations], “Nauka”, Moscow, 1980. MR580525

[2] S. A. Aisagaliev, General solution of a class of integral equations Mat. Zh. 5(2005),
No. 4(18), 17–23. MR2382425

[3] S. A. Aisagaliev, Controllability of a system of differential equations (in Russian), Dif-
ferentsialnye Uravneniya 27(1991), No. 9, 1475–1486; translation in Differential Equations
27(1991), No. 9, 1037–1045. MR1140543

[4] S. A. Aisagaliev, A. A. Kabidoldanova, Optimal speed of the nonlinear systems with
restrictions, Differ. Uravn. Protsessy Upr. 27(2010), No. 1, 30–55. MR2766412

[5] S. A. Aisagaliev, A. P. Belogurov, Controllability and speed of the process described
by parabolic equation with limited control (in Russian), Sibirsk. Mat. Zh. 53(2012), No. 1,
20–37; translation in Sib. Math. J. 53(2012), No. 1, 13–28 MR2962187

[6] S. A. Aisagaliev, A. A. Kabidoldanova, Optimal control by linear systems with lin-
ear quality criteria and restrictions (in Russian), Differ. Uravn. 48(2012), No. 6, 826–838;
translation in Differ. Equ. 48(2012), No. 6, 826–836. MR3180099

[7] S. A. Aisagaliev, Zh. Kh. Zhunussova, M. N. Kalimoldaev, Immersion principle for
boundary value problem for ordinary differential equations, Mat. Zh. 12(2012), No. 2(44),
5–22. url

http://www.ams.org/mathscinet-getitem?mr=580525
http://www.ams.org/mathscinet-getitem?mr=2382425
http://www.ams.org/mathscinet-getitem?mr=1140543
http://www.ams.org/mathscinet-getitem?mr=2766412
http://www.ams.org/mathscinet-getitem?mr=2962187
http://www.ams.org/mathscinet-getitem?mr=3180099
http://www.math.kz/images/journal/2012-2/AisagalievKalimoldaev.pdf

	Problem statement
	Transformation
	Integral equation
	Immersion principle
	Optimization problem
	Conclusion

